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Methanol is an amphiphilic solute whose aqueous solutions exhibit distinctive physical properties.
The volume change upon mixing, for example, is negative across the entire composition range, indi-
cating strong association. We explore the corresponding behavior of a Jagla solvent, which has been
previously shown to exhibit many of the anomalous properties of water. We consider two models of
an amphiphilic solute: (i) a “dimer” model, which consists of one hydrophobic hard sphere linked
to a Jagla particle with a permanent bond, and (ii) a “monomer” model, which is a limiting case of
the dimer, formed by concentrically overlapping a hard sphere and a Jagla particle. Using discrete
molecular dynamics, we calculate the thermodynamic properties of the resulting solutions. We sys-
tematically vary the set of parameters of the dimer and monomer models and find that one can readily
reproduce the experimental behavior of the excess volume of the methanol-water system as a function
of methanol volume fraction. We compare the pressure and temperature dependence of the excess
volume and the excess enthalpy of both models with experimental data on methanol-water solutions
and find qualitative agreement in most cases. We also investigate the solute effect on the temperature
of maximum density and find that the effect of concentration is orders of magnitude stronger than
measured experimentally. © 2012 American Institute of Physics. [doi:10.1063/1.3677185]

I. INTRODUCTION

Aqueous solutions of alcohol are important and ubiq-
uitous in the medical, personal care, transportation (e.g.,
antifreeze, fuels), and food industries, among others, and
thus have attracted much theoretical and experimental
attention.1–11 Methanol is a simple example of an amphiphilic
organic solute, and its aqueous solutions exhibit many inter-
esting nonidealities. Understanding this simple case is there-
fore a natural starting point when studying more complex so-
lutes in water, such as higher alcohols or proteins.

Because of the increasing availability of expanded com-
puting power, simulations have become an important research
tool in studying aqueous methanol solutions.12, 24–29 The op-
timized potential for liquid simulation13 is frequently used
to model alcohol molecules. To represent water as a solvent,
the SPC/E,14 TIP3P,15 TIP4P,16 and TIP5P17 models are fre-
quently used. Coarse-grained potentials also have been used
to explore the properties of water, e.g., the two-dimensional18

and three-dimensional19 Mercededes-Benz (MB) models,
which have also provided many insights into the physics of the
hydrogen-bond local structure of water and the hydrophobic
effect.18, 20–23

Recently, it was found that many thermodynamic prop-
erties of water can be reproduced using soft-core spherically
symmetric potentials, one of the most important of which is

a)Author to whom correspondence should be addressed. Electronic mail:
zqsu@bu.edu.

the Jagla model.30 The Jagla potential has a hard core and a
linear repulsive ramp, and contains two characteristic length
scales: a hard core a and a soft core b. For a range of parame-
ters, the Jagla model exhibits a water-like31 cascade of struc-
tural, transport, and thermodynamic anomalies.30, 32, 33, 35, 36

Buldyrev et al. in 2007 (Ref. 37) found that the Jagla sol-
vent exhibits key water-like characteristics with respect to hy-
drophobic hydration, suggesting that the water-like character-
istics of the Jagla solvent extend beyond the pure fluid.

In our coarse-grained model of solvent we have spheri-
cally symmetric particles that do not have hydrogen clouds. In
this sense, our model is simpler than the MB model, but it still
accurately shows the trends for the hydrophobic effect of non-
polar components. In our model, the tetrahedral anisotropy of
the hydrogen bond is replaced by the repulsive ramp of the
Jagla particle, which makes the coordination number of the
model lower than that of the Lennard-Jones potential. The
hydrophobic effect in our model is produced when the so-
lute particles penetrate the free spaces created by the ramps
of the Jagla particles. This finding suggests that the hy-
drophobic effect in water originates in the ability of non-
polar particles to penetrate the hydrogen network without
breaking it. In this paper, we will explore this analogy fur-
ther by examining the properties of solutions of amphipathic
solutes.

We focus on the properties of the excess volume and
the excess enthalpy, and on how amphiphilic solutes affect
the temperature of maximum density (TMD) of a solution. At
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FIG. 1. Experimental data6, 10 on the temperature dependence of the excess
volume, as a function of the volume fraction of methanol, ϕ, at different pres-
sures (dotted lines are polynomial fits of experimental data): (a) P = 0.1 MPa,
(b) P = 7 MPa, and (c) 13.5 MPa. Note that in (a) temperature interval be-
tween two measurements is 5 K, while the temperature difference in (b) and
(c) is 50 K. The excess volume is the relative difference between the volume
occupied by the mixture and the sum of the volumes of the pure components
before mixing, at fixed temperature and pressure.

T = 298 K and P = 0.1 MPa the excess volume and the excess
enthalpy are negative across the entire range of methanol con-
centrations (both quantities will be defined rigorously below).
The strongest effect occurs at a methanol volume fraction of
ϕmax = 59.7%, at which the negative excess volume deviates
from additivity by −3.57%.5 As T increases and P decreases,
the excess volume becomes more negative and the extremal
point shifts (see Figs. 1 and 2). Most solutes tend to sup-
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FIG. 2. Experimental data7, 10 on the pressure dependence of the excess
volume as a function of the volume fraction of methanol, ϕ, at two dif-
ferent temperatures (dotted lines are polynomial fits of experimental data):
(a) T = 323.2 K and (b) T = 285.15 K. Note that the range of the pressure
shown in (a) is smaller than that in (b). The excess volume is defined in the
caption of Fig. 1.

press water’s non-idealities, and hence they lower the TMD.
Some amphiphilic solutes behave differently: ethanol and t-
butanol have a marked non-monotonic effect (whereby the
TMD of the solution first increases with respect to that of wa-
ter upon solute addition, but decreases for more concentrated
solutions), and methanol has a very mild non-monotonic
effect.38

In Sec. I of this paper we model a simple amphiphilic so-
lution that mimics the properties of the methanol-water sys-
tem. We use a hard sphere with parameterized diameter aM

to model the hydrophobic methyl group, and a Jagla particle
to model the hydrophilic hydroxyl group. We link the hard
sphere and the Jagla particle using a bond of adjustable length
to model the amphiphilic solutes.

In Sec. II we describe in detail our models and sim-
ulation methods. In Sec. III we list and analyze the sim-
ulation results, and in its four subsections we discuss the
different parameter effects, the temperature and pressure
dependence of the excess volume, the behavior of the excess
enthalpy, and how the solute concentration affects the tem-
perature of maximum density. In Sec. IV we list our main
conclusions.
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II. MODEL AND METHODS

A. Dimer model for amphiphilic solutes

To model the simple amphiphilic solute methanol, we
separate CH3OH into the methyl (CH3) and the hydroxyl
(OH) groups. We model CH3 as a hard sphere and OH as
a Jagla particle. There is one bond between the hard sphere
and the Jagla particle. We call this model the dimer model.
To model the solvent, H2O, we use the Jagla particle. The
following interactions are included: there is a Jagla potential
between Jagla solvent particles, a Jagla potential between the
Jagla solvent and a dimer’s Jagla particle, and a Jagla poten-
tial between two dimer’s Jagla particles, all of which are de-
noted by UJJ(r) [Fig. 3(a)]. The interaction between the hard
spheres is modeled by a hard-core potential UHH(r), and the
interaction between the hard spheres and the Jagla particles is
modeled by a hard-core potential UJH(r). We model the cova-
lent bond with a narrow square well potential bounded by two
hard walls Ubond(r). The interaction potentials are

UJJ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ r < a

−Uo + (Uo+UR )(b−r)
b−a

a < r < b

−Uo
c−r
c−b

b < r < c

0 r > c

, (1)

where a is the hard core diameter, b = 1.72a is the soft core
diameter, c = 3a is the range of attractive potential, Uo is the
maximum attractive energy, and UR = 3.56Uo is the maxi-
mum repulsive energy, and

UHH (r) =
{

∞ r < aM

0 r > aM
, (2)

where aM is the diameter of the hard sphere, and

UJH (r) =
{

∞ r < aJM

0 r > aJM
, (3)

where aJM = aM+a
2 and

Ubond(r) =

⎧⎪⎨
⎪⎩

∞ r < ζ − δ
2

0 ζ − δ
2 < r < ζ + δ

2

∞ r > ζ + δ
2

. (4)

The hard core diameter aM and the average length of the co-
valent bond ζ are used as adjustable parameters in order to
achieve agreement between the excess volume of the model
solution and the experimental results of methanol-water solu-
tions at ambient conditions. In all our simulations, we use the
same set of Jagla potential parameters, b = 1.72a, c = 3a, and
UR = 3.56Uo.36 We use reduced units in terms of length a, en-
ergy Uo, and particle mass m. For temperature we use units of
Uo/kB; for pressure we use units of Uo/a3; and for volume we
use units of a3.

B. Monomer model for amphiphilic solutes

The best agreement between the dimer model and the ex-
perimental data occurs when bonds are short (for a more de-
tailed discussion, see Sec. II), i.e., the hard sphere that mod-
els the methyl group and the Jagla particle that models the
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FIG. 3. Sketch of the interaction potentials in our simulation. (a) The spher-
ically symmetric “two-scale” Jagla ramp potential. The two length scales are
the hard core diameter r = a, and the soft core diameter r = b. We study the
case UR = 3.56U0, b = 1.72a, and a long range cutoff c = 3a. (b) The in-
teraction potential between two monomers, with contact distance aM. (c) The
interaction potential between the Jagla particle and the monomer, contacting
at (a + aM)/2.

hydroxyl group almost overlap. For this reason we also con-
sider a methanol model in which the overlap is complete, and
the bond length vanishes. This leads to a spherically symmet-
ric potential that superimposes the Jagla particle and the hard
sphere. In this “monomer” model we introduce the interaction
potentials between “methyl” monomers, UMM(r) [Fig. 3(b)],
between monomer and Jagla particle, UJM(r) [Fig. 3(c)], and
between Jagla particles UJJ(r) [Fig. 3(a)]. In this case the
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interaction formulae are

UMM(r) =
{

∞ r < aM

UJJ(r) r > aM
, (5)

UJM(r) =
{

∞ r < aJM

UJJ(r) r > aJM
, (6)

where UJJ(r) is defined by Eq. (1).

C. Simulation details and analysis methods

For our simulations we use the discrete molecular dy-
namics (DMD) algorithm. With DMD we approximate a con-
tinuous potential by a discrete potential made up of a series
of steps (Fig. 3). We use the same scheme as in Ref. 36. Our
simulation consists of a fixed number N = 2000 particles in
a cubic box with periodic boundaries. We denote the solute
mole fraction by x. Since the dimer contains two particles and
the monomer one particle, the number of solute molecules
Ns(x) is

Ns(x) = Nx

x + 1
, (7)

in the dimer system, and

Ns(x) = Nx, (8)

in the monomer system. The number of the solvent particles
NJ(x) is

NJ (x) = N (1 − x)

x + 1
, (9)

in the dimer system, and

NJ (x) = N (1 − x), (10)

in the monomer system. The total number of molecules in the
system NT(x) is

NT (x) = N

x + 1
, (11)

in the dimer model, and

NT (x) = N, (12)

in the monomer model. The volume occupied by NJ(x) pure
Jagla solvent particles before mixing, VJ(x), and the volume
occupied by Ns(x) pure solute molecules before mixing, Vs(x),
at the given temperature and pressure, are given by

VJ (x) = NJ (x)

NJ (0)
Vmix(0), (13)

Vs(x) = Ns(x)

Ns(1)
Vmix(1), (14)

where Vmix(x) is the volume of the mixture with mole
fraction x.

We define the excess volume of the solution with respect
to the ideal mixture as

� V = Vmix(x)

VJ (x) + Vs(x)
− 1. (15)

If the excess volume �V is negative, the volume of the solu-
tion is less than the volume of the ideal mixture. If it is posi-
tive, the system expands after mixing at fixed temperature and
pressure. In most contexts, we use the volume fraction

ϕ = Vs(x)

VJ (x) + Vs(x)
, (16)

rather than the mole fraction x to express different solute con-
centrations of solutions.

We compare our simulation results with the data from
experiments,4, 5 where the excess volume is expressed in terms
of �Y = Vmix−(nwvw+nmvm)

nw+nm
, where nm is the number of the

moles of methanol, nw is the number of moles of water,
x = nm

nw+nm
is the mole fraction, and vw and vm are the mo-

lar volumes of water and methanol, respectively, at specific
temperature and pressure conditions. The conversion formu-
las between �V and �Y, and ϕ and x are

� V = �Y

xvm + (1 − x)vw

, (17)

ϕ = x

x + (1 − x) vw

vm

. (18)

Density is an important system property. We assume that
the Jagla particles and the solute particles correspond to the
same number of water and methanol molecules in a pure so-
lution, respectively, and express the density of the pure solute
in terms of the density ratio

ρ =
32
vs

18
vJ

, (19)

where vJ = V (0)
NJ (0) and vs = V (1)

Ns (1) are the volume per particle of
the pure solvent and the pure solute, respectively. We compare
the simulation with the experimental number ρ = 0.79.

The excess enthalpy is usually defined as

� He = Hmix − Hm − Hw

nm + nw

, (20)

where Hm is the total enthalpy of nm moles of pure methanol,
and Hw is the total enthalpy of nw moles of pure water under
specific temperature and pressure conditions. To put the en-
thalpy comparison on the same footing as the excess volume
data, we also report the excess enthalpy on a volumetric basis
and define the excess enthalpy per volume as

� Hs =
H (x) − Ns (x)

Ns (1) H (1) − NJ (x)
NJ (0) H (0)

VJ (x) + Vs(x)
, (21)

where H(x) is the enthalpy of the system with a mole fraction
x. The conversion formula is

� Hs = �He

x(vm − vw) + vw

. (22)

In our simulation, we measure �Hs in units of Uo/a3. In
order to compare our results with experimental data, we need
to convert our units into J/cm3 = MPa. In accordance with
Ref. 34, we use Uo = 4.75 KJ/mol and a = 2.7 × 10−8 cm.
Then we convert by simply multiplying our simulation results
by 4.008 × 102.
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III. RESULTS AND DISCUSSION

A. Effects of the parameters on model behavior

Because there are several parameters in our dimer model,
we first investigate how these affect the simulations, searching
for a set of parameters that can best model ambient methanol.
Since the goal is to explore the excess properties of the model,
vis-a-vis a real methanol-water solution, we compare our sim-
ulation results with the results reported in Ref. 5 concerning
the excess volume at T = 298 K and P = 0.1 MPa. We set our
simulation temperature and pressure at T = 0.5 and P = 0.02,
and we change the diameter of the hard spheres that model the
methyl group in methanol. Figure 4 shows the excess volume
of the solutions with different hard core diameters of the hard
spheres aM, for a fixed bond length ζ = 0.9a, across the entire
range of amphiphilic solute volume fraction. If aM ≤ 1.3a, we
cannot reproduce the volume reduction over the entire range
of volume fraction. If aM > 1.3a, the mixture shrinks over
the entire range of volume fractions. When the hard core di-
ameter increases, the volume fraction corresponding to max-
imum volume reduction (henceforth referred to as maximum
reduction volume fraction) decreases, but for this value of ζ

we cannot reproduce the experimentally observed maximum
reduction volume fraction.

We next show, in Fig. 5, how bond length affects the ex-
cess volume. We choose three different hard sphere diameters
and vary the bond length. For aM = 1.5a [Fig. 5(a)], as the
bond length increases, the excess volume becomes more neg-
ative and the maximum reduction volume fraction increases,
but its value is always larger than in experiments. For aM

= 1.6a [Fig. 5(b)] and aM = 1.7a [Fig. 5(c)], the excess
volume and the maximum reduction volume fraction exhibit
the same trend as the bond changes as seen for aM = 1.5a,
but their maximum reduction volume fraction is smaller and
closer to the experimental data. Thus, we see that the max-
imum reduction volume fraction ϕmax and the correspond-
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fraction for a range of hard core diameters aM, for the dimer model with ζ

= 0.9a. The simulations are done at T = 0.5 and P = 0.02. The experimental
result (circles) are for T = 298 K and P = 0.1 MPa,5 where the maximum
volume fraction reduction occurs at ϕmax ≈ 59.7%. For the simulation results,
when aM ≤ 1.3a, the excess volume has both positive and negative values.
As aM increases, the excess volume becomes more negative and ϕmax, the
maximum reduction volume fraction, decreases.
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FIG. 5. Dependence of the excess volume on solute volume fraction for var-
ious solute bond lengths ζ at three values of hard core diameter aM. The
simulations are done at T = 0.5 and P = 0.02. (a) aM = 1.5a, (b) aM
= 1.6a, (c) aM = 1.7a. As ζ increases, the excess volume, �V becomes more
negative and the maximum reduction volume fraction ϕmax increases. Calcu-
lations performed using the parameter sets ζ = 0.35a, aM = 1.6a in (b), and
ζ = 0.125a, aM = 1.7a in (c) agree well with experiment.

ing �Vmax agree well with the experimental observations for
selected bond lengths; i.e., for aM = 1.6a and ζ = 0.35a,
ϕmax = 63.6%, �Vmax = −3.67%, and for aM = 1.7a and
ζ = 0.125a, ϕmax = 58.717%, �Vmax = −3.55%. In addition,
over the entire range of volume fractions the excess volume
agrees quantitatively with experimental data for these two sets
of parameters.

In the dimer model, we achieve the closest agreement
with the experimental data at aM = 1.7a and ζ = 0.125a. At
this set of parameters, the hard sphere and the Jagla particle
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FIG. 6. Dependence of the excess volume on solute volume fraction for var-
ious hard core diameter values (aM), in the monomer (ζ = 0) model. Simula-
tions at T = 0.5 and P = 0.02. As aM increases, �V becomes more negative;
the maximum reduction volume fraction ϕmax is relatively insensitive to aM.
The excess volume at aM = 1.74a is similar to experiment, but the results are
less accurate than for the dimer model[see Figs. 5(b) and 5(c)].

nearly overlap. The dimer model can thus be modeled as a
monomer with a hard core aM ≈ 1.7a, as shown in Eqs. (5)
and (6). In order to achieve the closest agreement with the
experimental data, we vary the single parameter aM in this
model (Fig. 6). For all cases of aM, the reduction property can
be reproduced across the entire range of volume fractions. At
aM = 1.73a and aM = 1.75a, the trend of the excess volume is
very similar to the experimental results. For aM = 1.74a, the
maximum reduction volume fraction is close to the experi-
mental data, and in the range of volume fractions smaller than
the maximum reduction volume fraction, the excess volume is
also quantitatively reproduced. Overall, the monomer model
can reproduce the excess volume curve qualitatively but is not
as accurate as the dimer model.

In our model, the Jagla particle is a coarse-grained rep-
resentation of water that replaces two water molecules with
a spherically symmetrical particle.34 It is thus not surprising
that the best fit to the experimental data occurs when the am-
phiphilic solute is approximately spherically symmetric, and
this serves as a coarse-grained representation of two methanol
molecules.

At T = 298 K and P = 0.1 MPa, the methanol density is
0.78663 g/cc,5 and its ratio with respect to water is 0.79. We
have explored the relative density of the neat amphiphilic so-
lutes with respect to a pure Jagla solvent when we change the
parameters. The density increases when we shorten the bond
length, when the diameter of the hard sphere aM in the dimer
model decreases, and when the hard core of the monomer
aM decreases. From the above-discussed results we know that
when aM = 1.7a and ζ = 0.125a, we achieve the best agree-
ment between our simulation results and the experimental re-
sults. However, the density ratio of the pure solute for this
set of parameters is 0.66, less than the density ratio of real
methanol at T = 298 K and P = 0.1 MPa. In the monomer
model, when the hard core diameter of monomer is aM

= 1.74a, the density ratio is 0.64, also less than the experi-
mental value.

B. Temperature and pressure dependence
of the excess volume

Experimentally, when the temperature change is small,
e.g., 5 K, the change of the maximum reduction volume frac-
tion is negligible and there is a small increase in �V as the
temperature increases [Fig. 1(a)]. Over large temperature in-
tervals, e.g., 50 K, the excess volume becomes increasingly
negative and the maximum reduction volume fraction in-
creases slightly as the temperature increases [Figs. 1(b) and
1(c)]. We use our two models to check the temperature and
pressure dependence of the excess volume. Choosing the pa-
rameters that can best reproduce the experimental results of
the excess volume at T = 298 K and P = 0.1 MPa, we set aM

= 1.7a and ζ = 0.125a for the dimer model.
We calculate the temperature dependence of the excess

volume at pressures P = 0.02 and P = 0.1 in the dimer model
[Fig. 7]. At P = 0.02 (≈1.0 atm), we first measure the ex-
cess volume at a series of temperatures separated by 0.01
in the range of T = 0.5–0.6 [Fig. 7(a)]. The excess volume
becomes slightly more negative and the change of the maxi-
mum reduction volume fraction is negligible as the tempera-
ture increases. When we enlarge the temperature step to 0.05
[Fig. 7(b)], the excess volume becomes increasingly negative
and the maximum reduction volume fraction increases notice-
ably as the temperature increases. At P = 0.1 [Fig. 7(c)], we
find approximately the same results. However, when the tem-
perature is ∼0.5, the excess volume of the solution with less
than 15% of amphiphilic solutes goes to zero or becomes
positive, indicating that in our model the volume does not
decrease, and can even expand at these conditions. We will
discuss this “bump” in the excess volume curve later. The
temperature dependence at pressures P = 0.02 and P = 0.1
using the aM = 1.74a monomer model (not shown) are com-
parable to those of the dimer model.

We next compare the calculated pressure dependence of
the excess volume with the experimental results. In Fig. 2,
we report the experimental pressure dependence of the excess
volume at two different temperatures, T = 323.15 K and T
= 283.15 K, using two different pressure intervals. The re-
sults at T = 323.15 K cover pressures from P = 0.1 MPa to
P = 13.5 MPa, and those at T = 283.15 K cover pressures
from P = 0.1 MPa to P = 205 MPa. We can see that, as the
pressure increases, the excess volume becomes less negative.
Regarding the maximum reduction volume fraction of the ex-
cess volume, in Fig. 2(a), its value does not noticeably change
with pressure, in Fig. 2(b), however, we can clearly see that, as
the pressure increases, the maximum reduction volume frac-
tion does increase.

In our simulation, we fix the temperature at T = 0.5 and
calculate the excess volume at pressures from P = 0.02 to
P = 0.1. Our simulation results for the dimer model (see
Fig. 8) agree with the experimental results quite well, i.e., as
the pressure increases the excess volume becomes less nega-
tive and the maximum reduction volume fraction increases.
We also investigate the pressure dependence of the excess
volume at higher temperatures and find similar results to
those of T = 0.5, which agree with the experimental results
shown in Fig. 2. Regarding the positive “bump” at the small
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FIG. 7. Dependence of the excess volume on solute volume fraction, at var-
ious temperatures and three different pressures, for the dimer model with aM
= 1.7a, ζ = 0.125a. (a) P = 0.02, which is comparable to atmospheric pres-
sure. The temperature difference between curves is 0.01. (b) P = 0.02. The
temperature difference between curves is 0.5. (c) P = 0.1. As the temperature
increases, the excess volume becomes more negative and the maximum re-
duction volume fraction increases. In (c), when the temperature is low, there
is a range of dilute mixtures for which �V > 0. There are no corresponding
experimental observations.

volume fraction of amphiphilic solutes, we are not aware of
experimental data for this range of volume fractions, and this
suggests that, at high pressures and low temperatures, dilute
methanol-water solutions may have a positive excess volume.
The simulation results for the best monomer model are ap-
proximately similar to those for the dimer model—except that
the positive “bump” is smaller.
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FIG. 8. Dependence of the excess volume on solute volume fraction for
several different pressures, at T = 0.5, for the dimer model (aM = 1.7a,
ζ = 0.125a). As the pressure increases, the excess volume becomes more
negative and the maximum reduction volume fraction increases very slightly.

C. Excess enthalpy

The excess enthalpy in methanol-water solutions has
been measured at T = 298 K, and P = 0.1 MPa.4 The excess
enthalpy is negative (exothermic mixing), consistent with the
picture of strong association that follows from the volumetric
behavior. The maximum reduction occurs at a volume fraction
ϕmax = 42%, differing from that of the excess volume at these
specific conditions. At pressures P = 0.1 MPa, P = 20 MPa,
and P = 39 MPa, the excess enthalpy becomes less negative
as the temperature increases. The maximum reduction volume
fraction increases as the temperature increases. In some tem-
perature ranges, e.g., from T = 278.15 K to T = 298.15 K,
the maximum reduction volume fraction actually increases
as pressure increases, and the excess enthalpy becomes more
negative as the pressure increases.8, 9

In the dimer model, when aM > 1.0a, all the cases can re-
produce qualitatively the enthalpy of mixing. As aM increases,
the excess enthalpy becomes increasingly negative and the
maximum reduction volume fraction becomes smaller, fol-
lowing the same trend as in experiments. The magnitude of
the excess enthalpy for aM = 1.7a and aM = 1.8a can be close
to experimental results, but for the best model developed in
Sec. III A, the agreement is only qualitative.

We report the bond length dependence of the excess en-
thalpy at aM = 1.5a [Fig. 9(a)], aM = 1.6a [Fig. 9(b)], and aM

= 1.7a [Fig. 9(c)]. For aM = 1.5a and aM = 1.6a, as the bond
length increases, the excess enthalpy becomes more negative.
For aM = 1.7a, the excess enthalpy first becomes more neg-
ative and then less negative as the bond length increases. For
all three values of aM, the maximum reduction volume faction
becomes larger as the bond length increases and the maximum
enthalpy reduction is smaller than the experimental value. For
the monomer model, when aM > 1.6a, the excess enthalpy
can also be qualitatively reproduced, and as aM increases it
becomes more negative and the maximum reduction volume
fraction increases. The value of the excess enthalpy from sim-
ulations is smaller than the experimental values, but the mag-
nitude is comparable.
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FIG. 9. Dependence of the excess enthalpy on solute volume fraction for
various values of the bond length, at three different hard core diameters aM,
in the dimer model. The simulations are done at P = 0.02 and T = 0.05. (a)
aM = 1.5a, (b) aM = 1.6a, and (c) aM = 1.7a. For (a) and (b), as the bond
length increases, the excess enthalpy becomes more negative. For (c), the
excess enthalpy exhibits a non-monotonic dependence on bond length. The
maximum reduction volume fraction increases as ζ increases for all three
cases.

We return to the dimer with aM = 1.7a and ζ = 0.125a
and examine the temperature dependence. At P = 0.02
[Fig. 10(a)], our simulation results contradict the experimen-
tal data: the excess enthalpy becomes increasingly negative as
the temperature increases. However, the increasing maximum
reduction volume fraction with increasing temperature does
agree with the experimental trend. At P = 0.1 [Fig. 10(b)], the
excess enthalpy changes only very slightly with temperature,
although at the highest T the magnitude of the excess enthalpy
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FIG. 10. Dependence of the excess enthalpy on solute volume fraction for
various temperatures, for the dimer model with aM = 1.7a, ζ = 0.125a.
(a) P = 0.02. As the temperature increases, the excess enthalpy becomes
more negative, in contrast to experiment, and the maximum reduction volume
fraction increases.8 (b) P = 0.1. The excess enthalpy is nearly independent
of temperature. (c) P = 0.15. When T ≥ 0.6, the excess enthalpy decreases
as the temperature increases and the volume fraction corresponding to maxi-
mum exothermicity shifts towards slightly higher values.

decreases slightly with T. If we increase the pressure to P
= 0.15 [Fig. 10(c)], we can see that as the temperature in-
creases the magnitude of excess enthalpy decreases with T
and the maximum reduction volume fraction increases, in
agreement with experimental trends.

In our simulation of the pressure dependence of the ex-
cess enthalpy at T = 0.5 (Fig. 11), as the pressure increases,
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FIG. 11. Dependence of the excess enthalpy on solute volume fraction for
various values of the pressure, at T = 0.5, for the dimer model with aM
= 1.7a, ζ = 0.125a. As the pressure increases, the excess enthalpy increases,
and the volume fraction corresponding to maximum exothermicity increases.

the excess enthalpy becomes more negative and the maximum
reduction volume fraction becomes larger, which agrees well
with experimental observations of methanol-water solutions.

D. Effect on the temperature of maximum density

At sufficiently low temperatures and pressures, the den-
sity of liquid water exhibits a maximum with respect to tem-
perature at fixed pressure. For example, liquid water has a
maximum density at T = 277 K and P = 0.1 MPa. If we
add solutes to water, the temperature of the maximum den-
sity changes. According to Ref. 38, the TMD of a methanol
solutions reaches its maximum at around x = 0.6% mole frac-
tion and then decreases slightly as the mole fraction increases,
reaching 269 K at x = 5%. This non-monotonic behavior has
been explained by Chatterjee et al. using a statistical mechan-
ics model of water.39

We explore the change of the TMD with concentration for
our model. We define the change of the temperature of max-
imum density as �T = TMDs − TMDJ where TMDs is TMD of
the solution and TMDJ is the TMD of the pure Jagla liquid, at

TABLE I. The temperature of maximum density, TMD, and the difference
between the TMD of the solution and that of the pure solvent at the given
pressure, �T, for solutions with different mole fractions of amphiphilic so-
lutes in Jagla solvents, at different pressures. Results are for the dimer solute
model with aM = 1.7a, ζ = 0.125a.

P = 0.065 P = 0.1 P = 0.15

x × 100 TMD �T TMD �T TMD �T

0 0.507 0 0.516 0 0.510 0
1.27 0.491 − 0.016 0.504 − 0.012 0.502 − 0.008
2.56 0.472 − 0.035 0.489 − 0.027 0.490 − 0.02
3.90 0.446 − 0.062 0.474 − 0.04 0.486 − 0.024
5.26 0.426 − 0.81 0.462 − 0.51 0.478 − 0.032
6.67 . . . . . . 0.439 − 0.77 0.46 − 0.05
8.11 . . . . . . 0.416 − 0.1 0.441 − 0.069
9.59 . . . . . . . . . . . . 0.426 − 0.0837
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FIG. 12. Effect of amphiphilic solutes on TMD of solutions. We use the dimer
with parameters of aM = 1.7a, ζ = 0.125a. (a) The TMD of the solutions
at different solute concentrations, for P = 0.1. (b) The shift of TMD, with
respect to that of the pure solvent, �T, as a function of solute mole fraction,
x, at three different pressures. Note that �T is always negative, indicating
that adding solute lowers the solution’s TMD (lower temperatures are needed
to observe negative thermal expansion). For a given mixture, the magnitude
of �T decreases as the pressure increases.

the given pressure. We have carried out simulations at three
different pressures for the case of dimer with aM = 1.7a and
ζ = 0.125a. Our results are shown in Table I and Fig. 12.
We find that �T is always negative and its absolute value
increases monotonically with solute mole fraction. If we in-
crease pressure for the same mole fraction, the change of TMD

decreases in magnitude, but it never becomes positive. More-
over, we find that the decrease of TMD in our model is orders
of magnitude stronger than in methanol-water mixtures.

IV. CONCLUSION

Inspired by the distinctive properties of methanol-water
solutions, we construct a dimer with a hard sphere and a Jagla
particle to model amphiphilic solutes. We vary the hard core
diameter and the bond length to achieve the best agreement
between simulations and experiment in the excess volume.
We find that the best agreement occurs for the dimer with
aM = 1.7a and ζ = 0.125a, which suggests that the dimer
model can be reduced to a monomer with a large hard core
and an attractive potential that coincides with the attractive
part of the Jagla potential. Regarding the temperature and
pressure dependence of the excess volume, our results agree
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qualitatively with experimental data. Our model reproduces
the excess enthalpy of the methanol solutions less accurately
than the excess volume. This is related to the fact that, in our
simple model of amphiphilic solutes, we use the unchanged
Jagla potential for the amphiphilic group. We speculate that a
better agreement could be achieved if we varied the potential
of the amphiphilic group. When we investigate the effect of
the amphiphilic solute on the temperature of maximum den-
sity of a solution, we find that unlike in water-methanol so-
lution, the TMD monotonically decreases with solute concen-
trations. Moreover, the effect of concentration in the model is
orders of magnitude stronger than in experiments.
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